Inorganic Chemistry

Synthesis of ¹⁷O-Labeled Cs₂WO₄ and Its Ambient- and Low-Temperature Solid-State ¹⁷O MAS NMR Spectra

Hans J. Jakobsen,^{*,†} Henrik Bildsøe,[†] Jørgen Skibsted,[†] Michael Brorson,[‡] Ivan Hung,[§] and Zhehong Gan[§]

[†]Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, DK-8000 Aarhus C, Denmark

⁺Haldor Topsøe A/S, Nymøllevej 55, Aarhus University, DK-8000 Aarhus C, Denmark

⁹National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States

ABSTRACT: Following several seemingly straightforward but unsuccessful attempts to prepare a sample of ¹⁷O-enriched Cs_2WO_4 , we here report a simple, aqueous procedure for synthesis of pure Cs_2WO_4 , if so desired, enriched in ¹⁷O. The purpose for the preparation of ¹⁷O-enriched Cs_2WO_4 is to record its solidstate ¹⁷O MAS NMR spectrum, which would allow for a determination of its quadrupole coupling and chemical shift anisotropy (CSA) parameters and thereby for a comparison with the corresponding ³³S and ⁷⁷Se parameters in the related compounds M_2WS_4 and M_2WSe_4 . These compounds are isomorphous and crystallize in the orthorhombic space group *Pnma*, and Cs_2WO_4 turns out to be the only alkali metal tungstate with the *Pnma* crystal structure. Therefore, it has been mandatory to use Cs_2WO_4

and not K_2WO_4 (space group C2/*m*) for which CSA data have previously been published, to achieve a reliable comparison with the ³³S and ⁷⁷Se data and thus allow assignment of the three different sets of ¹⁷O NMR parameters to the three distinct oxygen sites (O(1,1), O(2), and O(3)) in the *Pnma* crystal structure of Cs₂WO₄. Because the ambient temperature ¹⁷O MAS NMR spectrum of Cs₂WO₄ exhibits a dynamically broadened singlet, resorting to low-temperature (-83 °C) conditions at 21.15 T was necessary and resulted in a high-resolution ¹⁷O MAS spectrum that allowed both ¹⁷O quadrupole coupling and CSA parameters to be determined. As no quadrupole coupling data were obtained from the earlier investigation on K₂WO₄, the present results for Cs₂WO₄ prompted a reinvestigation of the ¹⁷O MAS spectrum for K₂WO₄, which actually also shows the presence of ¹⁷O quadrupole couplings for all three oxygen sites. These data for Cs₂WO₄ and K₂WO₄ are consistent and result in unambiguous assignments of the parameters to the three distinct oxygen sites in their crystal structures.

INTRODUCTION

Second only to hydrogen and carbon, the three light elements oxygen, nitrogen, and sulfur play an important role in organic, biological, and inorganic materials. While solid-state NMR detection of the spin-1/2 ¹⁵N isotope is routinely performed in multidimensional (1D, 2D, and 3D) experiments, because of the availability of moderately inexpensive ¹⁵N-labeled compounds, solid-state NMR detection of the three low- γ quadrupolar nuclei $^{14}\text{N},\,^{17}\text{O},\,\text{and}\,\,^{33}\text{S}$ can be much more difficult. Particularly, this is true for the low natural abundances of the 17 O (0.037%) and 33 S (0.76%) isotopes. The extremely high cost of 33 S-enriched compounds, compared to that of the relatively less expensive ¹⁷Oenriched compounds, has been a tremendous challenge for the advancement of solid-state ³³S NMR. This is the most likely reason why less than 20 articles on solid-state ^{33}S NMR have so far appeared in the literature and why ^{17}O solid-state NMR articles are much more frequent. Our laboratory has recently made several contributions to the progress of ³³S MAS NMR.¹ Most of our ³³S MAS NMR studies have involved the tetrathiotungstate $(WS_4^{2-})^{1b-d}$ and tetrathiomolybdate

 $(MoS_4^{2-})^{1b,c}$ anions with NH_4^+ or $CH_3NH_3^+$ as counter cations but also published/unpublished results for some of their alkali metal cations on ¹⁴N² and ³³S³ MAS NMR. Single-crystal XRD studies⁴ have shown that these materials are all isomorphous and crystallize in the orthorhombic space group Pnma, for example, the tetrathiotungstate series $(NH_4)_2WS_4$,^{4a} $(CH_3NH_3)_2WS_4$,^{4b} K_2WS_4 ,^{4c} Rb_2WS_4 ,^{4d} and Cs_2WS_4 .^{4e} Thus, the WS_4 ² anions for each of these compounds are all crystallographically equivalent, whereas the four sulfur atoms of each WS_4^{2-} ion constitute three unique sites: S(1,1), S(2), and S(3). In a recent solid-state ³³S MAS NMR investigation, we succeeded in simultaneously extracting precise ³³S quadrupole coupling and chemical shift anisotropy (CSA) parameters for the three nonequivalent sulfur atoms (S sites) in (CH₃NH₃)₂WS₄ from its highly complex natural abundance ³³S MAS NMR spectrum at 14.1 T.^{1d} In addition to a simulation of this spectrum, we also proposed an assignment for the three sets of ³³S NMR parameters to the

Received:
 April 7, 2011

 Published:
 July 19, 2011

three crystallographically nonequivalent S sites^{1d} within the Pnma crystal structures for both $(C\hat{H}_3NH_3)_2WS_4 (1)^{4b}$ and $(NH_4)_2$ - $WS_4(2)$.^{4a} These assignments were based on a comparison of the differences in local structure for the three S sites as obtained from their two crystal structures^{4a,b} and relating these to the quite large differences observed for some of the ³³S quadrupole coupling $(C_{\rm Q} \text{ and } \eta_{\rm Q})$ and CSA $(\delta_{\sigma}, \eta_{\sigma}, \delta_{\rm iso})$ parameter values in 1 and 2^{1d} (also the electronic Supporting Information, ESI, in ref 1d). The resulting assignments of the spectral parameters to the S(1,1), S(2), and S(3) sites in 1 and 2 led to interesting consistencies and trends for the $C_{\rm Q}$, $\eta_{\rm Q}$ parameters, as well as for the $(\delta_{\sigma}, \eta_{\sigma}, \delta_{iso})$ CSA data for **1** and **2**. Moreover, the trends observed for the isotropic and anisotropic ³³S chemical shift parameters for the three nonequivalent S atoms in the WS_4^{2-} anions of 1 and 2, prompted us to assign the three corresponding (then unassigned) sets of ⁷⁷Se chemical shift parameters (ESI in ref 1d) recently reported for the three nonequivalent ⁷⁷Se (spin I = 1/2) atoms in the WSe₄²⁻ ion of $(NH_4)_2$ WSe₄,⁵ which displays⁶ Pnma structure as 1^{4b} and 2.^{4a}

These results prompted us to explore correlations between the ³³S quadrupole coupling ($C_{\rm Q}$ and $\eta_{\rm Q}$) and CSA (δ_{σ} , η_{σ} , $\delta_{\rm iso}$) parameters cited above and the corresponding ¹⁷O (spin I = 5/2) quadrupole coupling and CSA parameters determined for 17 O-enriched $M_2 WO_4$ compounds. Powder XRD has shown that Cs_2WO_4 is orthorhombic and isomorphous with β -K₂SO₄ at room temperature,^{7,8} by analogy with for example the crystal structures for $(CH_3NH_3)_2WS_4(1)$, ^{4b} $(NH_4)_2WS_4(2)$, ^{4a} and $(NH_4)_2WSe_4^6$ which all crystallize in the orthorhombic space group *Pnma*. Moreover, in Cs_2WO_4 one of the two unique Cs^+ cations is surrounded by 9 oxygen atoms and the other by 10 oxygen atoms, ' an arrangement identical to that found in the recently determined crystal structure for Cs₂WS₄ (space group *Pnma*), with one Cs⁺ cation surrounded by 9 sulfur atoms and the other by 10 sulfur atoms.^{4e} It turns out that Cs₂WO₄ is the only alkali metal tungstate, which belongs to space group Pnma.7, Unfortunately, no solid-state ¹⁷O NMR or other NMR data have been reported for Cs₂WO₄. However, it appears that a ¹⁷O MAS NMR spectrum has been recorded and analyzed about 25 years ago for a 40 atom % 17 O-enriched sample of K₂WO₄, ⁹ which has a crystal structure C2/m' very much similar to the *Pnma* crystal structures for 1, 2, and (NH₄)₂WSe₄ as pointed out earlier.^{1d} Although no ¹⁷O quadrupole coupling (\overline{C}_Q and η_Q), but only CSA (δ_{σ} , η_{σ} , δ_{iso}) parameters, were obtained from this ¹⁷O MAS NMR spectrum for the three crystallographically nonequivalent oxygen sites in K₂WO₄,⁹ we have proposed an assignment of these CSA data to the three nonequivalent ¹⁷O sites based on a comparison with the corresponding CSA parameters for the M_2WE_4 (E = ³³S and ⁷⁷Se) structures^{1d} (ESI in ref 1d).

In this study, we investigate the appearance of solid-state ¹⁷O MAS NMR spectra of an about 10 atom % ¹⁷O-enriched sample of Cs₂WO₄ at ambient (i.e., 293 K, 20 °C) and at about 190 K (-83 °C) for a comparison of the potentially determined ¹⁷O quadrupole coupling (C_Q and η_Q) and CSA (δ_{σ} , η_{σ} , δ_{iso}) parameters with the corresponding ³³S parameters already determined for the two [WS₄²⁻] *Pnma* structures (1 and 2) cited above. Moreover, such a comparison should allow for an assignment of the solid-state ¹⁷O NMR parameters to the three different O(1,1), O(2), and O(3) sites in Cs₂WO₄, which correspond to the similar sites in the *Pnma* structures for 1 and 2. In addition, this comparison/assignment of Cs₂WO₄ could also serve to confirm or possibly discard our proposed assignment for the

Figure 1. ¹³³Cs MAS NMR spectra of a sample of Cs₂WO₄, synthesized as described in the Experimental Section, obtained at 78.67 MHz (14.1 T) and for $\nu_r = 3300$ Hz. (a) Experimental (48 scans in 72 min) and (b) simulated spectra showing the two nonequivalent Cs sites with a 1:1 intensity ratio.

three crystallographically nonequivalent O(1,1), O(2), and O(3) sites in K₂WO₄^{1d} [ESI] based on the originally determined ¹⁷O CSA (δ_{o} , η_{o} , δ_{iso}) parameters.⁹ However, in our hands the incorporation of ¹⁷O into Cs₂WO₄ does not appear to be just as simple as described for ¹⁷O-enriched K₂WO₄ (i.e., ¹⁷O-exchange into K₂WO₄ by heating a solution in H₂¹⁷O at 80 °C for 8 days)⁹ mainly because of the readily formation of cesium polytungstates in aqueous solutions, as judged from several very complex solid-state ¹³³Cs MAS NMR spectra of samples isolated under these conditions. Thus, we here also describe a completely different approach for the synthesis of a pure sample of ¹⁷O-enriched Cs₂WO₄, for which the purity has been checked based on the present first report of solid-state ¹³³Cs MAS NMR spectra and corresponding (C_Q and η_Q) and CSA (δ_{o} , η_o , δ_{iso}) parameters, determined for several of our samples of Cs₂WO₄.

Because it turns out that the solid-state ¹⁷O MAS NMR investigation of our ¹⁷O-enriched sample of Cs₂WO₄ has allowed determination of the ¹⁷O quadrupole coupling (C_Q and η_Q) as well as the CSA (δ_{σ} , η_{σ} , δ_{iso}) parameters from an observation of both its central and satellite transitions (CT and STs respectively), we also report a reinvestigation of the about 25 year old ¹⁷O MAS NMR spectrum of K₂WO₄⁹ for which a set of only CSA ($\delta_{\sigma}, \eta_{\sigma}, \delta_{iso}$) parameters were obtained. Similar to the ¹⁷O MAS NMR spectrum of Cs₂WO₄, our ¹⁷O spectrum of K₂WO₄ shows resonances for both the CT and the four STs ($\pm^3/_2 \Leftrightarrow \pm^1/_2$ and $\pm^5/_2 \Leftrightarrow \pm^3/_2$), which have allowed a determination of both the ¹⁷O quadrupole coupling (C_Q and η_Q) and CSA ($\delta_{\sigma}, \eta_{\sigma}, \delta_{iso}$) for K₂WO₄. The two sets of ¹⁷O quadrupole coupling (C_Q and η_Q) parameters determined for Cs₂WO₄ and K₂WO₄ have allowed assignments of their solid-state NMR parameters to the three distinct oxygen sites, O(1,1), O(2), and O(3), consistent with the assignment for the ³³S parameters for 1 and 2.

EXPERIMENTAL SECTION

Materials and Synthesis. Our first two samples of Cs_2WO_4 and K_2WO_4 were both purchased from Alfa Aesar. Whereas the sample of K_2WO_4 was very soluble in H_2O in accordance with the earlier report on its ¹⁷O-exchange in a $H_2^{-17}O$ solution at 80 °C for 8 days,⁹ the sample of Cs_2WO_4 appeared almost insoluble in H_2O . This observation for the Alfa Aesar sample of Cs_2WO_4 (e.g., 0.86 g in 1 g H_2O at 17 °C¹¹ or the report on recrystallization of Cs_2WO_4 in H_2O at <10 °C⁸). In addition, the solid-state ¹³³Cs MAS NMR spectrum of the fresh Cs_2WO_4 sample from Alfa Aesar was a very complex, low-intensity spectrum, completely inconsistent with the two unique Cs sites of the *Pnma* structure of pure Cs_2WO_4 and also with our recently published ¹³³Cs MAS NMR spectrum for a sample of $Cs_2WS_4^{-2}$, which has also been identified with the *Pnma* crystal structure.^{4e}

A second sample of Cs₂WO₄ was obtained as a gift from the company 'Chemetall GmbH', D-60487 Frankfurt am Main, Germany, and simultaneously we undertook a new approach for the synthesis of Cs₂WO₄ using highly basic conditions in our laboratories (vide infra for a detailed description). These two Cs₂WO₄ samples (the German gift and our synthesized sample) were both identified as pure and identical samples according to the experimental and optimized fitted ¹³³Cs MAS NMR spectra as shown in Figure 1.

A ¹⁷O-enriched sample of the Alfa Aesar K₂WO₄ material was easily synthesized according to the earlier reported, roughly 25 year old method (¹⁷O-exchange in a 40% ¹⁷O-enriched H₂¹⁷O solution at 80 °C for 8 days),⁹ using 10% ¹⁷O-enriched H₂¹⁷O purchased from CortecNet, France. Employing the exact same procedure for one of our two pure Cs₂WO₄ samples resulted in an unidentified, impure product according to both ¹⁷O and ¹³³Cs MAS NMR spectroscopy. Thus, we here propose a new method for the synthesis of Cs₂WO₄ – one, which also allows for an easy ¹⁷O-incorporation into the compound.

Synthesis of Cs_2WO_4 and Attempted Synthesis of ¹⁷O-Labeled Cs_2WO_4 . Twenty one grams (125 mmol) of $CsOH \cdot H_2O$ (Fluka) was dissolved in 2.5 mL H₂O (139 mmol) using a magnetic stirrer. This was followed by addition of 12.53 g of solid (yellow) $WO_3 \cdot H_2O$ (H₂WO₄, tungstic acid) (50 mmol, Aldrich), which was added in small portions at proper time intervals because of an extensive heating effect. Addition of all $WO_3 \cdot H_2O$ yielded a clear, colorless solution. Under vigorous stirring of this solution, 30 mL of methanol (CH₃OH) was added, which resulted in precipitation of a white powder. Centrifugation for 10 min at 1000 rpm separated the white solid product was washed once in methanol, isolated by centrifugation as described above, and finally dried overnight under high vacuum. Yield: 13.43 g (52%). The product was identified as pure Cs₂WO₄ by powder XRD and solid-state ¹³³Cs MAS NMR spectroscopy (Figure 1).

Employing 2.5 mL of 10% $H_2^{17}O$ as opposed to the 2.5 mL ordinary H_2O for the synthesis described above in an attempt to obtain a ¹⁷O MAS NMR spectrum, resulted in a similar yield; however, with an apparently very low incorporation of ¹⁷O according to its ¹⁷O MAS

NMR spectrum. This is most likely due to a slow ¹⁷O-exchange under the present synthetic conditions. Thus, in a second attempt to improve on the ¹⁷O-exchange, the highly basic solution of Cs_2WO_4 (using 2.5 mL 10% $H_2^{17}O$) was kept at 80 °C in a Teflon-lined autoclave for 8 days before methanol was added to precipitate and isolate a hopefully higher ¹⁷O-enriched Cs_2WO_4 sample. Indeed, this was confirmed by its ¹⁷O MAS NMR spectrum, which indicated a somewhat higher but still quite low ¹⁷O content compared to the quantity of 10% $H_2^{17}O$ used. Thus, an alternative improved route to the synthesis of ¹⁷O-labeled Cs_2WO_4 was sought.

Improved Synthesis of ¹⁷O-Labeled Cs_2WO_4 . In a second attempt to improve on the degree of ¹⁷O-incorporation into Cs_2WO_4 , it was decided to alternatively ¹⁷O-enrich one of the solid starting materials used in the new synthesis outlined above for Cs_2WO_4 . Here, we describe an improvement for the synthesis of ¹⁷O-enriched Cs_2WO_4 based on an initial ¹⁷O-enrichment of the $WO_3 \cdot H_2O$ (tungstic acid) starting material using 10% $H_2^{-17}O$, despite the fact tungstic acid is insoluable in cold H_2O and only slightly soluable in hot H_2O .

 $WO_3 \cdot H_2O$ (3.14 g, 12.4 mmol) was added to 5 mL 10% $H_2^{17}O$ (~265 mmol) and the yellow slurry was transferred to a pyrex-glass ampule, which was then sealed off. The ampule was kept at 90 °C for 35 days and was shaken vigorously almost each day during this period. When the ampule was opened the settled solid residue of hopefully ¹⁷Oenriched WO₃·H₂O was isolated following removal of the supernatant H₂O layer, dried, and then showed a weight of 2.95 g corresponding to a yield of ~94%. Analysis of the resulting WO₃·H₂O product by 17 O MAS NMR spectroscopy showed a quite intense set of ssbs, which at this stage was not subjected to a detailed spectral analysis but mainly served as an indicator for a decent ¹⁷O-incorporation into the very insoluable WO3·H2O. Then, Cs2WO4 was prepared from 2.49 g of the ¹⁷Oenriched WO₃ \cdot H₂O (~10.0 mmol), which was added in small portions to a solution of 4.22 g of CsOH+H2O (25.1 mmol) in 0.5 mL 10% $H_2^{17}O$ (26.3 mmol) following the same procedure as described above. The yield of $^{17}\text{O-enriched}\ \text{Cs}_2\text{WO}_4$ was 1.85 g (3.6 mmol, 36%) and its identity confirmed by solid-state ¹³³Cs MAS NMR spectroscopy.

Solid-State MAS NMR Spectroscopy. ¹⁷O and ¹³³Cs MAS NMR experiments on Cs_2WO_4 and K_2WO_4 at ambient temperature were performed at Aarhus University on a Varian Direct-Drive VNMRS-600 wide-bore spectrometer (14.1 T) at 81.34 and 78.67 MHz, respectively. High-field ¹⁷O MAS NMR experiments were performed at the National High Magnetic Field Lab (NHMFL), Tallahassee. Ambient temperature ¹⁷O MAS spectra of K_2WO_4 were also obtained on a Bruker 830-DRX narrow-bore spectrometer (19.6 T) at 112.99 MHz, whereas both ambient- and low-temperature ¹⁷O MAS NMR experiments of Cs_2WO_4 used the Bruker 900 MHz (21.15 T) Avance spectrometer, equipped with a home-built wide-bore (105 mm) magnet, at a frequency of 122.09 MHz.

Varian Direct-Drive VNMRS-600 Spectrometer. The ¹⁷O MAS NMR experiments on this spectrometer employed a Varian/Chemagnetics double resonance T3MAS probe for 7.5 mm zirconia rotors, whereas the ¹³³Cs MAS NMR experiments used a home-built 5 mm double resonance broadband MAS probe. The magic angle of $\theta = 54.736^{\circ}$ was adjusted to the highest possible precision ($< \pm 0.005^{\circ}$) for the ¹⁷O MAS NMR experiments using ¹⁴N MAS NMR on a sample of NH₄H₂PO₄, whereas for ¹³³Cs MAS NMR on the home-built 5 mm probe we used ²³Na MAS NMR and a sample of NaNO₃. The ¹⁷O and ¹³³Cs experiments were spun at MAS frequencies of $v_r = 5000$ and 3300 Hz respectively with a precision <1.0 Hz in v_r , employing the experimental setup, combined with a Varian/Chemagnetics MAS speed controller, as recently described.¹² ¹⁷O and ¹³³Cs rf field strengths were calibrated using a sample of 10% H₂¹⁷O and an aqueous solution of 1.0 M CsCl, respectively. The ¹⁷O signal from 10% H₂¹⁷O and ¹³³Cs MAS resonance from solid CsCl, spinning at $v_r = 5000$ Hz, were used as external references. 90° flip angles of $pw(90)_{liquid} = 6.5$ and 6.0 μ s were achieved

Table 1. ¹³³Cs Quadrupole Coupling (C_Q, η_Q) and Chemical Shift Parameters $(\delta_{or}, \eta_{or}, \delta_{iso})$ from ¹³³Cs MAS NMR Spectra of Cs₂WO₄^{*a*} and Cs₂WS₄^{*b*} Determined at 14.1 T^{*c*}

sample	site	$C_{\rm Q}$ (kHz)	$\eta_{\rm Q}$	$\delta_{\sigma} ({ m ppm})$	η_{σ}	$\delta_{ m iso}~(m ppm)$	ψ, χ, ξ (degree)
Cs_2WO_4	Cs(1)	423	0.62	-88	0.40	-222.2	0, 13, 56
Cs_2WO_4	Cs(2)	213	1.00	128	0.26	-163.4	90, 16, 7
Cs_2WS_4	Cs(1)	307	0.01	-216	0.71	-214.0	
Cs_2WS_4	Cs(2)	144	0.85	208	0.82	-134.0	

^{*a*} Data determined in this work for one of the Cs₂WO₄ samples (Figure 1) synthesized in this work. ^{*b*} The parameters reported for Cs₂WS₄ are those determined in ref 2. ^{*c*} The δ_{iso} values (relative to solid CsCl) have an error limit of ±0.3 ppm. The error limits for $C_{Q_2} \eta_{Q_2} \delta_{on} \eta_{on}$ and (ψ , χ and ξ) are ±10 kHz, ±0.05, ±10 ppm, ±0.10 and (±20, ±5, ±10), respectively.

for the ¹⁷O and ¹³³Cs solutions for the two different probes, respectively. Thus, the actual value of 2.0 μ s employed for both the solid-state ¹⁷O and ¹³³Cs MAS experiments corresponds to liquid flip angles of 28° and 30°, respectively. Relaxation delays of 30 and 90 s were used for the ¹⁷O and ¹³³Cs MAS experiments, respectively. For the ¹⁷O MAS spectra, we acquired 2240 scans for the Cs₂WO₄ sample (i.e., a total experimental time of 19 h) and 2880 scans for the K₂WO₄ sample (i.e., a total experimental time of 24 h), whereas for the ¹³³Cs MAS spectra 48 scans were acquired (i.e., a total experimental time of 72 min).

Bruker DRX-830 Narrow-Bore 19.6 T Spectrometer. The high-field ¹⁷O MAS NMR experiments for K₂WO₄ were performed at ambient temperature on this spectrometer (at 112.99 MHz), equipped with a Magnex narrow-bore (31 mm i.d.) magnet. A home-built (NHMFL) broadband 7 mm single-resonance MAS probe (29 mm o.d.), using 7 mm o.d. Bruker rotors (sample volume 225 μ L) positioned at the magic angle of 54.74° were employed. The final ¹⁷O MAS spectrum was acquired for a MAS $\nu_r = 5.0$ kHz, liquid 18° flip-angle, 5 s relaxation delay, and 16 384 scans (i.e., a total experimental time of 23 h).

Bruker Avance-900 Wide-Bore 21.15 T Spectrometer. High-field, ambient-, and low-temperature ¹⁷O MAS NMR spectra for the ¹⁷Oenriched Cs₂WO₄ sample were acquired on the 21.15 T home-built wide-bore magnet (NHMFL) equipped with a 900 MHz Bruker Avance console. The experiments employed a home-built (NHMFL) wide-bore (89 mm o.d.) variable-temperature (VT) broadband 3.2 mm doubleresonance MAS probe for which a 90° flip-angle $pw(90)_{liquid} = 6.4 \ \mu s$ was obtained for the ¹⁷O resonance of ordinary H_2O . A value of pw = 1.2 μ s, which corresponds to a liquid 17° flip-angle, was used for the MAS experiments, along with a 16 and 30 s relaxation delay for the acquisition of the ambient- (22 °C) and low-temperature (-83 °C) MAS spectra, respectively. The ¹⁷O ambient-temperature MAS spectrum was acquired for $v_r = 15.04$ kHz (i.e., the sample temperature is \sim 5–10 °C higher because of frictional heating) using 200 scans (i.e., a total experimental time of \sim 53 min), whereas the ¹⁷O low-temperature MAS spectra were acquired for spinning frequencies of $v_r = 15.04$ kHz (162 scans, total experimental time of 81 min) and v_r = 4.825 kHz (1200 scans, total experimental time of 10 h).

Spectral Analysis. All ¹⁷O and ¹³³Cs MAS NMR spectra have been analyzed using the *STARS* simulation software package. *STARS* (*SpecTrum Analysis for Rotating Solids*) was developed in our laboratory several years ago^{13,14} and the original version of *STARS* was early on incorporated into Varian's *VNMR* software for SUN Microsystem computers and has been available from Varian Inc. as part of their *VNMR Solids* software package.¹⁵ The present version of *STARS* used here has been upgraded during the past few years and is capable of simultaneously handling spectral parameters (i.e., quadrupole coupling (C_Q , η_Q), chemical shift (δ_{iso} , δ_{σ} , η_{σ}), and Euler angles (ψ , χ , ξ) relating the relative orientation for these two tensorial interactions) for up to eight different nuclear sites in the optimization of a fit to an experimental spectrum. In addition to these spectral parameters, the program can also include (*i*) deviation $(\Delta\theta)$ from the magic-angle, (*ii*) rf bandwidth, (*iii*) rf offset, (*iv*) jitter in spinning frequency,¹² and (*v*) the linewidths (Lorentzian and/or Gaussian) in the iterative fitting procedure. This upgraded version of *STARS* has been incorporated into both the Varian *VnmrJ* software running on SUN Microsystems Ultra-5 workstations and the *VnmrJ* software running on a Linux RedHat PC.

The quadrupole coupling and CSA parameters are defined by

$$C_{\rm Q} = eQV_{\rm zz}/h \quad \eta_{\rm Q} = (V_{\rm yy} - V_{\rm xx})/V_{\rm zz} \tag{1}$$

$$\delta_{\sigma} = \delta_{\rm iso} - \delta_{\rm zz} \quad \eta_{\sigma} = (\delta_{\rm xx} - \delta_{\rm yy})/\delta_{\sigma} \tag{2}$$

$$\delta_{iso} = (1/3)(\delta_{xx} + \delta_{yy} + \delta_{zz}) = (1/3)\mathrm{Tr}(\delta)$$
(3)

using the convention

$$|\lambda_{zz} - (1/3)\mathrm{Tr}(\lambda)| \ge |\lambda_{xx} - (1/3)\mathrm{Tr}(\lambda)| \ge |\lambda_{yy} - (1/3)\mathrm{Tr}(\lambda)|$$
(4)

for the principal elements ($\lambda_{\alpha\alpha} = V_{\alpha\alpha}, \delta_{\alpha\alpha}$) of the two tensors. The relative orientation of the two tensors is described by the three Euler angles (ψ, χ, ξ), which correspond to positive rotations of the CSA principal axis system around $z(\psi)$, the new $y(\chi)$, and the final $z(\xi)$ axis.

RESULTS AND DISCUSSION

A typical experimental ¹³³Cs MAS NMR spectrum for a Cs₂WO₄ sample obtained by one of the improved synthetic procedures is shown in part a of Figure 1 for a spinning frequency $v_{\rm r}$ = 3300 Hz. It shows two well-resolved patterns of spinning sidebands (ssbs), corresponding to the two unique Cs sites in the *Pnma* crystal structure of Cs_2WO_4 ,^{7,8} in a clean spectrum without any impurity resonances. This spectrum, and thus ¹³³Cs MAS NMR, has served as a benchmark tool for characterizing the structure and purity of our standard and ¹⁷O-enriched synthesized samples of Cs₂WO₄. We note that for several other spinning frequencies around $v_r = 3300$ Hz (e.g., for $v_r = 5000$ Hz), a severe overlap between the two sets of ssbs for the two Cs sites is observed, that is, an overlap that severely hinders the extraction of precise values for the quadrupole coupling and CSA parameters for the two Cs sites. The simulated spectrum, resulting from an optimized iterative fit of the anisotropic parameters to the experimental spectrum (part a of Figure 1), is shown in part b of Figure 1 and the corresponding final parameters are summarized in Table 1. For a comparison, Table 1 also lists our recently reported corresponding ¹³³Cs NMR parameters determined for the Pnma crystal structure of Cs₂WS₄.² Furthermore, DFT calculations of the electric field gradient (EFG) tensor for the two Cs-sites in Cs₂WS₄ has allowed assignment of the two sets of ¹³³Cs quadrupole coupling parameters (C_Q, η_Q) to these sites² in the crystal structure of Cs₂WS₄.^{4e} The pair of ¹³³Cs spectral parameters in Table 1 for Cs₂WO₄ exhibit quite similar trends as the pair of Cs₂WS₄ parameters (e.g., in particular the approximate ratio of 2 between the two C_0 values ($C_0(1)$ and $C_0(2)$) for Cs₂WS₄ as well as for Cs₂WO₄), and we have therefore assigned the ¹³³Cs spectral parameters for the two Cs-sites in the Pnma crystal structure of Cs₂WO₄ to the same structural Cs-sites as was done for Cs₂WS₄.²

Following confirmation of the structure and purity for the synthesized $^{17}\text{O-enriched}$ Cs $_2\text{WO}_4$ sample, employing both ^{133}Cs MAS NMR and powder XRD, its 14.1 T ^{17}O MAS

Figure 2. ¹⁷O MAS NMR spectrum of ¹⁷O-enriched Cs₂WO₄, synthesized based on 10 atom % $H_2^{17}O$ as described in the Experimental Section, obtained at 81.34 MHz (14.1 T), $v_r = 3300$ Hz, 2240 scans in 19 h (overnight), and at ambient temperature. The narrow resonance at 377.9 ppm arises from the zirconia ceramic of the 7.5 mm rotor (text).

NMR spectrum (81.34 MHz) was recorded at ambient temperature for $v_r = 5000$ Hz. Much to our surprise, the spectrum (Figure 2) appears as a quite broad singlet with fwhm \sim 8.7 kHz. This observation sharply contrasts the ambient-temperature ¹⁷O MAS NMR spectrum, reported about 25 years ago,9 of the structurally related ¹⁷O-enriched K₂WO₄ salt, which shows distinct well-resolved CSA ssb patterns for the three nonequivalent O-sites (2:1:1) comprising the ¹⁷O CT.⁹ The tiny narrow resonance observed in the Cs_2WO_4 spectrum (Figure 2) on the righthand side of the broad resonance at 377.9 ppm and several small, narrow resonances in the region around the broad resonance have been identified as the ¹⁷O CT and the ssbs from the STs respectively arising from the natural abundance ¹⁷O MAS spectrum of the zirconia ceramic for the 7.5 mm rotor. This was confirmed by recording the ¹⁷O MAS spectrum of the empty zirconia rotor, which proved the origin of both the CT and the STs, observed earlier in several other ¹⁷O MAS NMR studies.¹⁶ The detection of the ¹⁷O ssbs for the STs from the zirconia ceramic rotor material also shows that the precise setting of the magic angle (vide supra) has been preserved upon change of the probe tuning elements in going from ¹⁴N to the ¹⁷O MAS NMR experiments.

Without sufficient low-temperature instrumentation available or the possibility for its use on the 14.1 T Varian VNMRS-600 and 19.6 T Bruker DRX-830 spectrometers, it was decided to go for recording of an ambient- and low-temperature (~ -80 °C) ¹⁷O MAS NMR spectra of the ¹⁷O-enriched Cs₂WO₄ sample on the 21.15 T Bruker Avance-900 ultra wide-bore spectrometer. The purpose was to check if the apparent scrambling, observed in the ¹⁷O MAS NMR spectrum at 14.1 T for the expected three nonequivalent ¹⁷O sites, could be stopped on the NMR time scale, thereby resulting in a spectrum with well-resolved resonances under these conditions. The 21.15 T (122.09 MHz) ¹⁷O

Figure 3. ¹⁷O MAS NMR spectrum of the ¹⁷O-enriched Cs₂WO₄ sample used in Figure 2 and obtained at 122.09 MHz (21.15 T), ν_r = 15.04 kHz, 162 scans in 1.5 h, and with a temperature of -83 °C (190 K). Two groups of resonances with an intensity ratio of 3:1 are observed (text).

Figure 4. ¹⁷O MAS NMR spectra of the ¹⁷O-enriched Cs₂WO₄ sample used in Figure 2 and obtained at 122.09 MHz (21.15 T), $\nu_r = 4283$ Hz, and for a temperature of -83 °C (190 K). (a) Experimental (1300 scans in 11 h) and (b) simulated spectra, where the simulated spectrum has been obtained as iterative fit to the experimental spectrum based on an intensity ratio of 2:1:1 for the O(1,1), O(2), O(3) sites (text).

MAS NMR of Cs₂WO₄ at ambient temperature (not shown) exhibits the exactly same features as the 14.1 T spectrum in Figure 2, including a fwhm = 8.8 kHz. However, by lowering the temperature of the sample to -83 °C, the ¹⁷O MAS NMR spectrum for $v_r = 15.04$ kHz splits into two sets of widely spaced ssb patterns with an intensity ratio of 3:1 and a separation of 18.6 ppm (2271 Hz at 122.09 MHz) as shown in Figure 3. Because the *Pnma* crystal structure determined for Cs₂WO₄^{4e} would predict the observation of three different O sites, O(1,1), O(2), and O(3), with an intensity ratio 2:1:1, this shows that the spectrum for one of the two low-intensity O sites (O(2) or O(3)) accidentally coincides with that for the O(1,1) site. This contrasts not only the ¹⁷O MAS NMR spectrum of K₂WO₄,⁹ which has a

Table 2. ¹⁷O Quadrupole Coupling (C_Q, η_Q) and Chemical Shift Parameters $(\delta_{o}, \eta_o, \delta_{iso})$ for Cs₂WO₄ Determined from ¹⁷O MAS NMR Spectra of ¹⁷O-Enriched Cs₂WO₄ Recorded at 21.15 T and -83 °C^{*a*}

site	$C_{\rm Q}(\rm kHz)$	$\eta_{\rm Q}$	$\delta_{\sigma}(\rm ppm)$	η_{σ}	$\delta_{\rm iso}~(\rm ppm)$	ψ, χ, ξ (degree)
O(1,1)	278	0.42	179	0.48	459.5	0, 77, 0
O(2)	216	0.97	211	0.03	459.8	0, 89, 90
O(3)	241	0.58	256	0.08	478.2	90, 92, 0
$O(1,1,1)^{b}$	276	0.25	204	0.00	459.6	163,90, 87
O(3)	241	0.58	256	0.08	478.2	90, 92, 0

^{*a*} The δ_{iso} values (relative to aqueous H₂¹⁷O) have an error limit of ±0.5 ppm. The error limits for $C_{Q_i} \eta_{Q_j} \delta_{\sigma_i} \eta_{\sigma_i}$ and $(\psi, \chi \text{ and } \xi)$ are ±10 kHz, ±0.05, ±10 ppm, ±0.10 and (±20, ±5, ±10), respectively. ^{*b*} Results from an analysis of the experimental spectrum in part a of Figure 4 assuming only two different O sites with an intensity ratio of 3:1, O(1,1,1):O(3) (text).

crystal structure C2/ m^7 very much related to *Pnma* but also the three S-sites, S(1,1), S(2), and S(3), observed in the ³³S MAS NMR spectra for the two isostructural (*Pnma*) tetrathiotung-states (NH₄)₂WS₄^{1b,c} and (CH₃NH₃)₂WS₄.^{1d} To retrieve the ¹⁷O anisotropic interaction parameters for the

three different oxygen sites with as high a precision as possible at this temperature, a ¹⁷O MAS NMR spectrum was recorded for the lower spinning speed of v_r = 4283 Hz and at -83 °C. This should allow for an increased number of ssbs for the two ssb patterns to enter the iterative parameter-fitting process. This experimental ¹⁷O MAS NMR spectrum is shown in part a of Figure 4 along with its final optimized/simulated spectrum in part b of Figure 4. The spectrum in part b of Figure 4 results from an optimized fit to the experimental spectrum for which all three sets of spectral parameters (i.e., the quadrupole coupling $(C_0,$ $\eta_{\rm Q}$), chemical shift ($\delta_{\rm iso}, \delta_{\sigma}, \eta_{\sigma}$), and Euler angles (ψ, χ, ξ)) for the O(1,1), O(2), and O(3) sites were allowed to vary independently, combined with a determination of the error limits for these parameters and for the precisions in the setting of the experimental parameters (e.g., $\Delta v_{\rm r}$ and $\Delta \theta$) using our STARS software.^{13,14} The corresponding final sets of optimized parameters are summarized in Table 2. It could be argued that the experimental ¹⁷O MAS NMR spectrum in part a of Figure 4 may also be analyzed assuming only two different O-sites with an intensity ratio of 3:1(O(1,1,1):O(3)), corresponding to rotation about one of the W–O bonds for the tetrahedral WO_4^{2-} anion being the first step in the process of stopping the complete scrambling of all four oxygen atoms, as observed from the ambient ¹⁷O MAS NMR spectrum in Figure 2. Clearly, such an analysis would not be consistent with the Pnma crystal structure for Cs₂WO₄. Anyway, we performed the analysis, including an optimized fit (not shown) to the spectrum in part a of Figure 4, and the results are shown in Table 2. We note that the rms error from this fit is somewhat larger than that obtained above using the Pnma space group model and also that the simulated spectrum from the *Pnma* model shows a slightly better resemblance with the experimental spectrum. Thus, in the following we use the data from the Pnma model for comparisons with corresponding ¹⁷O, ³³S, and ⁷⁷Se data in structurally related materials.

In comparison to the exploratory ¹⁷O MAS NMR study on K_2WO_4 by Schramm and Oldfield⁹ (vide infra), the most striking result seen from the ¹⁷O data in Table 2 is the requirement to include the ¹⁷O quadrupole coupling (C_Q and η_Q) as well as the CSA

a b 2000 1000 0 ppm

Figure 5. ¹⁷O MAS NMR spectra of ¹⁷O-enriched K₂WO₄, prepared by exchange with 10 atom % H₂¹⁷O as described in the Experimental Section and according to an earlier recipe,⁹ obtained at 81.34 MHz (14.1 T), $\nu_r = 5000$ Hz, and at ambient temperature. (a) Experimental (2880 scans in 24 h), where the insert shows an expansion of the three isotropic resonances, and (b) simulated spectrum using the optimized parameters listed in Table 3 for the 14.1 T parameters.

 $(\delta_{\sigma}, \eta_{\sigma}, \delta_{iso})$ interaction parameters for all three oxygen sites in the fitting procedure, to arrive at a decent fit for the ¹⁷O MAS spectrum of Cs₂WO₄. This follows from the original 11.7 T ¹⁷O MAS spectrum for the CT in K₂WO₄⁹ at ambient temperature, which exhibits 10 groups of three lines for $\nu_r = 3.2$ kHz with no indication of measurable quadrupole interactions for the three O(1,1), O(2), and O(3) sites and therefore was analyzed considering the CSA interaction only.⁹ Thus, with the present ¹⁷O results obtained for Cs₂WO₄, we decided to perform a reinvestigation of the ambient temperature ¹⁷O MAS NMR spectrum for K₂WO₄, using a synthesized ~10% ¹⁷O-enriched sample (Experimental Section), to look for possible signs of ¹⁷O quadrupole interactions by taking advantage of the STs.

The complete experimental ¹⁷O MAS NMR spectrum (i.e., including both the CTs and all STs) for K₂WO₄ at 14.1 T and $\nu_r = 5000$ Hz is shown in part a of Figure 5 and is fully consistent with the crystal structure exhibiting three crystallographically nonequivalent oxygen sites (O(1,1), O(2), O(3)).⁷ Most importantly, the appearance of this spectrum differs significantly from the originally published ¹⁷O MAS NMR spectrum⁹ in that the STs give rise to numerous ssbs outside the region of the CTs for all three sites. In addition, within the spectral region for the CTs the ssbs for the STs make substantial contributions to the intensities of the ssbs for the CTs. Therefore, spectral analysis was performed for the complete manifolds of ssbs for all CTs and

Table 3. ¹⁷O Quadrupole Coupling (C_Q, η_Q) and Chemical Shift Parameters $(\delta_{\sigma}, \eta_{\sigma}, \delta_{iso})$ for K₂WO₄ from ¹⁷O MAS NMR Spectra of ¹⁷O-Enriched K₂WO₄ at 14.1 and 19.6 T^{*a*}

exp	sites	C _Q (kHz)	$\eta_{\rm Q}$	$\delta_{\sigma} (ext{ppm})$	η_{σ}	$\delta_{ m iso}~(m ppm)$	ψ , χ , ξ (degree)
14.1 T	O(1,1)	486	0.12	212	0.34	437.0	40, 89, 0
19.6 T	O(1,1)	482	0.15	215	0.22	436.9	40, 84, 0
11.7 T^{b}	O(1,1)			220	0.15	437	_
14.1 T	O(2)	320	0.81	215	0.16	421.6	30, 35, 0
19.6 T	O(2)	326	0.80	214	0.15	421.5	50, 36, 0
11.7 T^{b}	O(2)			214	0.30	422	_
14.1 T	O(3)	366	0.51	211	0.02	428.6	60, 63, 0
19.6 T	O(3)	367	0.51	224	0.18	428.5	90, 62, 0
11.7 T^b	' O(3)			227	0.22	429	_
				17			

^{*a*} The δ_{iso} values (relative to H₂¹⁷O) have an error limit of ±0.5 ppm. The error limits for $C_{Q_i} \eta_{Q_i} \delta_{o_i} \eta_{\sigma}$ and $(\psi, \chi, and \xi)$ are ±5 kHz, ±0.05, ±8 ppm, ±0.10 and (±20, ±5, and $\xi = \pm 10$ for O(2) and O(3) and $\xi = \pm 15$ for O(1,1)), respectively. It is noted that the atomic numbering used here for the three different O sites, O(1,1), O(2), O(3), is identical to that used in a recent study^{1d} and that it differs from that used in the report of the crystal structure for K₂WO₄⁷. ^{*b*} The principal axis values from ref 9 are converted to the δ_{o_i} η_{o_i} δ_{iso} convention used here (Experimental Section).

STs in terms of ¹⁷O chemical shifts ($\delta_{or} \eta_{or} \delta_{iso}$) and quadrupole coupling (C_Q, η_Q) parameters along with the three Euler angles (ψ, χ, ξ) for the three O(1,1), O(2), O(3) sites with relative intensities of 2:1:1. After a few preliminary spectral simulations, a final combined and simultaneous three-site optimized iterative fit to the manifolds of ssbs for the experimental spectrum results in the ¹⁷O spectral parameters summarized in Table 3 for the three independent oxygen sites in K₂WO₄. The simulated spectrum (part b of Figure 5) corresponding to these parameters shows an excellent agreement with the experimental spectrum.

To enhance the effects of the ¹⁷O CSAs relative to the first-order quadrupole interactions, a ¹⁷O MAS NMR spectrum has been recorded at the higher field of 19.6 T for $v_r = 5000$ Hz with the purpose of changing the relative intensities within the three manifolds of ssbs and thereby the appearance of the full ¹⁷O MAS NMR spectrum. This high-field ¹⁷O MAS spectrum would allow for an independent second spectral analysis, including determination of the anisotropic parameters for comparison with the data obtained at 14.1 T, and thereby serve as an independent check on the precision of the spectral parameters at 14.1 T. The experimental 19.6 T ¹⁷O MAS NMR spectrum in part a of Figure 6 and its corresponding optimized simulated spectrum in part b of Figure 6 are in mutual accordance, similar to the two corresponding 14.1 T spectra in Figure 5. The spectral parameters determined from the 19.6 T spectrum are summarized in Table 3 for an easy comparison with the data obtained at 14.1 T and the ¹⁷O CSA parameters originally determined at 11.7 T.⁹ This comparison of the ¹⁷O quadrupole coupling ($C_{\rm Q}$, $\eta_{\rm Q}$) and CSA ($\delta_{\sigma}, \eta_{\sigma}, \delta_{iso}$) parameters determined at 14.1 and 19.6 T for K₂WO₄ shows that the two sets of data are in excellent agreement and both sets are within the experimental errors listed for the parameters in the footnotes of Table 3. Moreover, it is noteworthy that the early reported CSA parameters determined at 11.7 T^9 (Table 3) are also in very good agreement with the 14.1 and 19.6 T data obtained here. However, it is quite remarkable that the early ¹⁷O CSA parameters determined from the ¹⁷O

Figure 6. ¹⁷O MAS NMR spectra of ¹⁷O-enriched K₂WO₄, using the sample from Figure 5, obtained at 112.99 MHz (19.6 T) acquired using a 7.0 mm Bruker rotor (sample volume 225 μ L), $\nu_r = 5000$ Hz, and at ambient temperature. (a) Experimental (16 384 scans in 23 h), where the insert shows an expansion of the three isotropic resonances, and (b) simulated spectrum using the optimized parameters listed in Table 3 for the 19.6 T parameters.

MAS spectrum at 11.7 T⁹ exhibit a very good agreement with the data of the present study. The reason is that simulated ¹⁷O MAS spectra performed in this study for the CTs and STs at 11.7 T (67.76 MHz) and $v_r = 3.2$ kHz (i.e., the experimental setup used in ref 9), using the (C_Q, η_Q) and the $(\delta_{\sigma}, \eta_{\sigma}, \delta_{iso})$ data determined here, show that the STs make significant intensity contributions to the total (ST + CT) intensities for the 10 group of CT resonances observed in ref 9 for the individual O(1,1), O(2), O(3) sites. In particular, this holds for the O(2) and O(3) sites (i.e., those having the lowest $C_{\rm Q}$ values) for which the STs for the 6 CT resonances of lowest intensity contribute between 50 and 90% to the total CT intensities. Indeed, a simulation using the CSA (δ_{σ} , η_{σ} , δ_{iso}) parameters only (i.e., $C_{\rm Q} = 0$) shows a spectrum almost identical to the spectrum published by Schramm and Oldfield⁹ and therefore indicates that the STs are lost in their spectrum. Although one could speculate on several reasons, which could cause this observation, our simulations show that neither (i) the magic-angle setting, which has been very well adjusted because $\Delta heta \sim 0^\circ$ according to the simulations, nor *(ii)* jitter in spinning frequency can account for the loss of the STs. Thus, we can only speculate that a strange, unfortunate combination of other experimental conditions (e.g., excitation $(\sim 90^{\circ})$, relaxation delay, different relaxation times for the CTs and STs, detection) may have caused the loss of the STs in the detection of the earlier published spectrum."

Most importantly, the determination of the ¹⁷O quadrupole coupling (C_Q, η_Q) parameters for both Cs₂WO₄ and K₂WO₄ in

Table 4. ¹⁷O Quadrupole Coupling (C_Q, η_Q) and Chemical Shift Parameters $(\delta_\sigma, \eta_\sigma, \delta_{iso})$ for Cs₂WO₄ (-83 °C) and K₂WO₄ Determined from ¹⁷O MAS NMR Spectra of ¹⁷O-Enriched Cs₂WO₄ and K₂WO₄ and Compared with Corresponding Earlier Reported and Assigned^{1d 33}S and ⁷⁷Se Parameters for $(CH_3NH_3)_2WS_4$ (1),^{1d} $(NH_4)_2WS_4$ (2),^{1d} and $(NH_4)_2WSe_4$;⁵ the Assignments of the ¹⁷O Parameters to the Individual Oxygen Sites in Their Crystal Structures Follow from This Comparison (Text)^{*a*}

sample/sites	$C_{\rm Q}$ (kHz)	$\eta_{\rm Q}$	$\delta_{\sigma}\left(ppm ight)$	η_{σ}	$\delta_{ m iso}~(m ppm)$	ψ , χ , ξ (degree)	ref
Cs ₂ WO ₄							
O(1,1)	278	0.42	179	0.48	459.5	0, 77, 0	
O(2)	216	0.97	211	0.03	459.8	0, 89, 90	
O(3)	241	0.58	256	0.08	478.2	90, 92, 0	
K ₂ WO ₄ ^b							
O(1,1)	482	0.15	215	0.22	436.9	40, 84, 0	
O(2)	326	0.80	214	0.15	421.5	50, 36, 0	
O(3)	367	0.51	224	0.18	428.5	90, 62, 0	
K ₂ WO ₄							
O(1,1)			220	0.15	437		9
O(2)			214	0.30	422		9
O(3)			227	0.22	429		9
$(CH_3NH_3)_2WS_4$							
S(1,1)	794	0.87	401	0.11	545.3	5, 85, 21	1d
S(2)	847	1.00	344	0.10	473.1	76, 78, 26	1d
S(3)	965	0.40	383	0.25	491.5	94, 89, 1	1d
$(NH_4)_2WS_4$							
S(1,1)	708	0.77	389	0.16	542.3	147, 10, 2	1d
S(2)	531	0.08	380	0.05	495.8	53, 4, 16	1d
S(3)	620	0.14	396	0.35	518.7	87, 47, 73	1d
$(NH_4)_2WSe_4^{\ c}$							
Se(1,1)			926	0.03	1338		5
Se(2)			864	0.01	1155		5
Se(3)	22		892	0.32	1256		5

^{*a*} The error limits for the ³³S parameters $C_{Q_2} \eta_{Q_2} \delta_{o_1} \eta_{o_1}$ and δ_{iso} are identical to those published, ^{1d} i.e., ±0.07 kHz, ±0.05, ±4 ppm, ±0.05, and ±0.5 ppm, respectively. The δ_{iso} values are relative to neat CS₂ (the ³³S chemical shift of 1.0 M Cs₂SO₄ is 333 ppm relative to CS₂) and include corrections for the second-order quadrupolar shifts. The ψ , χ , and ξ Euler angles for the ³³S parameters are those directly obtained from the optimized fitting to the individual S sites with the smallest error limits observed for the χ angle of ±6°. ^{1d} For the error limits of the ¹⁷O parameters for Cs₂WO₄ and K₂WO₄ we refer to the footnotes for these parameters in Tables 3 and 4, respectively. ^{*b*} The ¹⁷O parameters shown here for K₂WO₄ are those determined from the 19.6 T spectrum and presented in Table 3 because of the increased sensitivity for the ¹⁷O CSA parameters to the highest applied magnet field strengths. ^{*c*} The principal axis values from ref 5 are converted to the $\delta_{or} \eta_{or} \delta_{iso}$ convention used here (Experimental Section).

the present study will allow for a definite assignment of the ¹⁷O spectral parameters to the different O(1,1), O(2), O(3) sites in the crystal structure for the WO₄²⁻ anion of these samples by an additional comparison with the ³³S quadrupole coupling parameters for the equivalent S(1,1), S(2), S(3) sites^{1d} in the crystal structure for the WS₄²⁻ anions in (CH₃NH₃)₂WS₄ (1)^{4b} and (NH₄)₂WS₄ (2)^{4a} (vide supra). As mentioned in the introduction, we recently proposed an assignment of the published⁹ three sets of CSA ($\delta_{cn} \eta_{cn} \delta_{iso}$) parameters for K₂WO₄ to the three nonequivalent ¹⁷O sites in its crystal structure based on a comparison with the corresponding ³³S and ⁷⁷Se CSA parameters for some M₂WE₄ (E = ³³S and ⁷⁷Se) structures^{1d} (ESI in ref 1d). To take full advantage of the complete ¹⁷O spectral parameters obtained here for Cs₂WO₄ and K₂WO₄ in a comparison with the earlier reported ³³S and ⁷⁷Se data for 1, 2 and (NH₄)₂WSe₄ respectively we have summarized the spectral parameters for all the compounds in Table 4 and with the assignments according to their crystal structures, which will now be briefly discussed.

First, we note that the atomic numbering used here for the three different O sites, O(1,1), O(2), O(3), with a 2:1:1 intensity ratio, is identical to that in our recent study^{1d} for the assignment

of NMR parameters to the S, Se, and O sites in 1, 2, (NH₄)₂WSe₄, and K₂WO₄. This numbering differs from that used in the report of the crystal structure for $K_2WO_4^{-7}$ (space group C2/m very similar to *Pnma*) and in the original report for the $(NH_4)_2WS_4$ (2) structure^{4a} (space group *Pnma*), which accordingly have been changed to that employed here. The assignment of the resulting spectral parameters for the two equivalent chalcogens to the E(1,1) sites (E = O, S, Se) for the samples in Table 4 is straightforward based on the relative intensities of 2:1:1 used in the spectral analysis for the three group of resonances. However, a distinction between and thus assignment of the parameters to the E(2) and E(3) sites (E = O and Se) may not be trivial; however, for the present samples it immediately follows from a comparison with the spectral parameters determined in our exploratory work on the assignment for S(2) and S(3) in $(CH_3NH_3)_2WS_4$ (1) and $(NH_4)_2WS_4$ (2).^{1d} Thus, for the assignments shown in Table 4 we observe excellent consistencies between almost all of the spectral parameters not only for the E(2) and E(3) sites but also for the E(1,1) sites. For the 17 O and ³³S quadrupole coupling parameters, we note that the $C_{\rm O}$ values for the E(3) sites are always larger than for the E(2) sites,

while η_Q for the E(2) sites approaches values $\eta_Q \sim 1$ except for $(NH_4)_2WS_4$ (heavily hydrogen bonded structure). Similarly, for the ¹⁷O, ³³S, and ⁷⁷Se chemical shift parameters (δ_{σ} , η_{σ} , δ_{iso}) we observe that the δ_{σ} values for the E(3) sites are in all cases larger than for the E(2) sites, whereas η_{σ} for the E(2) sites is close to a value $\eta_{\sigma} \sim 1$. Furthermore, for the isotropic chemical shifts (δ_{iso}) we note that δ_{iso} for the E(3) sites is larger compared to the E(2) sites for all samples, while δ_{iso} for the E(1,1) sites has the largest value of the three, that is, E(1,1) > E(3) > E(2) in all cases, except for the -83 °C ¹⁷O MAS spectrum of Cs₂WO₄. Finally, it is noted that the tentative assignment we proposed recently^{1d} (ESI in ref 1d) for the old ¹⁷O CSA parameters⁹ determined for K₂WO₄, and which was mainly based on the order for the three isotropic chemical shifts, has now been fully confirmed following the determination of the ¹⁷O quadrupole coupling parameters for both Cs₂WO₄ and K₂WO₄ in this work.

CONCLUSIONS

Following the successful synthesis of a ¹⁷O-enriched sample of $C_{s_2}WO_4$ and also for an earlier described sample of K_2WO_4 , we have succeeded in determining ¹⁷O quadrupole coupling parameters along with the ¹⁷O CSA data for these two samples. The ¹⁷O quadrupole coupling data have allowed unambiguous assignments for the three different sets of spectral parameters for each sample to the three nonequivalent oxygen sites, O(1,1), O(2), O(3), in the crystal structures for $C_{s_2}WO_4$ (space group Pnma) and K_2WO_4 (space group C2/m). Full consistencies are observed for the ¹⁷O spectral parameters with those for some other chalcogen spin nuclei (³³S and ⁷⁷Se) in related and isostructural materials.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +45 8942 3842; Fax: +45 8619 6199; E-mail: hja@ chem.au.dk.

ACKNOWLEDGMENT

We are thankful to Chemetall GmbH, Frankfurt am Main, Germany for the sample of ordinary and pure Cs_2WO_4 . The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, Aarhus University, sponsored by two Danish Science Research Councils, Teknologistyrelsen, the Carlsberg Foundation, Direktør Ib Henriksens Foundation is acknowledged. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-0654118, the State of Florida, and the U.S. Department of Energy.

REFERENCES

 (a) Jakobsen, H. J.; Hove, A. R.; Bildsøe, H.; Skibsted, J. J. Magn. Reson. 2006, 179, 444–451. (b) Jakobsen, H. J.; Hove, A. R.; Bildsøe, H.; Skibsted, J.; Brorson, M. Chem. Commun. 2007, 1629–1631. (c) Hansen, M. R.; Brorson, M.; Bildsøe, H.; Skibsted, J.; Jakobsen, H. J. J. Magn. Reson. 2008, 190, 316–326. (d) Jakobsen, H. J.; Bildsøe, H.; Skibsted, J.; Brorson, M.; Srinivasan, B. R.; Näther, C.; Bensch, W. Phys. Chem. Chem. Phys. 2009, 11, 6981–6986. (e) Jakobsen, H. J.; Bildsøe, H.; Skibsted, J.; Brorson, M.; Gor'kov, P.; Gan, Z. J. Magn. Reson. 2010, 202, 173–179.

(2) Jakobsen, H. J.; Bildsøe, H.; Skibsted, J.; Hansen, M. R.; Brorson, M.; Srinivasan, B. R.; Bensch, W. *Inorg. Chem.* **2009**, *48*, 1787–1789.

(3) Jakobsen, H. J.; Bildsøe, H.; Skibsted, J.; Hansen, M. R.; Brorson, M.; Srinivasan, B. R.; Bensch, W. *S0th ENC* (Experimental NMR Conference), Abstract No. 352, Asilomar, CA, 2009.

(4) (a) Srinivasan, B. R.; Poisot, M.; Näther, C.; Bensch, W. Acta Crystallogr. 2004, E60, i136-i138. (b) Srinivasan, B. R.; Näther, C.; Bensch, W. Acta Crystallogr. 2008, E64, m296-m299. (c) Srinivasan, B. R.; Girkar, S. V.; Näther, C.; Bensch, W. J. Coord. Chem. 2009, 62, 3559-3572. (d) Yao, J.; Ibers, J. A. Acta Crystallogr. 2004, E60, i10-i12. (e) Srinivasan, B. R.; Näther, C.; Bensch, W. Acta Crystallogr. 2007, E63, i167-i170.

(5) Demko, B. A.; Eichele, K.; Wasylishen, R. E. J. Phys. Chem. A 2006, 110, 13537–13550.

(6) Müller, A.; Krebs, B; Beyer, H. Z. Naturforsch. 1968, 23B, 1537-1545.

(7) Koster, A. S.; Kools, F. X. N. M.; Rieck, G. D. Acta Crystallogr. 1969, B25, 1704–1709.

(8) Kools, F. X. N. M.; Koster, A. S.; Rieck, G. D. Acta Crystallogr. 1970, B26, 1974–1979.

(9) Schramm, S.; Oldfield, E. J. Am. Chem. Soc. 1984, 106, 2502–2510.
(10) Brüdgam, I.; Fuchs, J.; Hartl, H.; Palm, R. Angew. Chem., Int. Ed.

1998, 37, 2668–2670. (11) Chemetall GmbH, D-60487 Frankfurt am Main, Germany,

(11) Chemetan Gmori, D-00487 Frankruft am Main, Germany, Technical Bulletin on Cesium Tungstate.

(12) Jakobsen, H. J.; Hove, A. R.; Bildsøe, H.; Skibsted, J.; Brorson,
 M. J. Magn. Reson. 2007, 185, 159–163.

(13) Jakobsen, H. J.; Skibsted, J.; Bildsøe, H.; Nielsen, N. C. J. Magn. Reson. 1989, 85, 173–180.

(14) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. *J. Magn. Reson.* **1991**, *95*, 88–117.

(15) Varian Manual, STARS (SpecTrum Analysis for Rotating Solids), Publication No.87- 195223–00, Rev. A0296, 1996.

(16) (a) Bastow, T. J.; Stuart, S. N. Chem. Phys. **1990**, 143, 459–467.

(b) Kroeker, S.; Rice, D.; Stebbins, J. F. Am. Mineral. 2002, 87, 572–579.
(c) Viefhaus, T.; Bolse, T.; Muller, K. Solid State Ionics 2006, 177, 3063–3068.
(d) Kim, N.; Hsieh, C.-H.; Huang, H.; Prinz, F. B.; Stebbins, J. F. Solid State Ionics 2007, 178, 1499–1506.